Velkommen til Matematikcenter online forum
Opret dig som bruger og få gratis adgang til Danmarks eneste gratis matematikhjælp for alle.
Har du allerede en bruger? Log ind her.

Differentialregning

bare laura
Indlæg: 6
Tilmeldt: 13 jun 2021, 17:38

Differentialregning

Indlægaf bare laura » 13 jun 2021, 17:45

NB: Emnet hører nok til mat B, selvom jeg har mat A.
Spørgsmålet er opstået, da jeg så videoen herfra: https://www.webmatematik.dk/lektioner/b ... rentiation

Hej, jeg har svært ved at forstå at beviset for differentiation af sum er det samme som det for differentiation af differens. Det er fordi der ved differens i tælleren kommer til at stå f(x+dx)-g(x+dx)-(g(x)-f(x) som bliver delt op i tællerne f(x+dx)+f(x) - g(x+dx)+g(x), hvilket ikke matcher tællerne i g'(x) og f'(x). Jeg håber, i forstår mit spørgsmål og kan hjælpe mig:)
Bedste hilsner Laura
ringstedLC
Indlæg: 483
Tilmeldt: 22 okt 2017, 18:05

Re: Differentialregning

Indlægaf ringstedLC » 13 jun 2021, 20:45

Velkommen på webmatematik.dk

Nej, men du er lidt undskyldt, dels fordi der mangler en slutparentes og dels fordi forskellen ved differens forklares lidt upræcist:
Sum:
\(\begin{array} {lll} \frac{\mathrm{d} }{\mathrm{d} x}\bigl(f(x)+g(x)\bigr)\!\!\!\! &= \underset{\,h\,\rightarrow \,0}{\lim}\biggl(\frac{f(x+h)\,+\,g(x+h)\,-\,\color{Red} {\bigl(}f(x)\,+\,g(x)\color{Red} {\bigr)}}{h}\biggr)\quad ,\;\frac{\mathrm{d} }{\mathrm{d} \color{Red} {c}}\bigl(f(c)\bigr)=\underset{\,h\,\rightarrow \,0}{\lim}\Bigl(\frac{f(c+h)\,-\,f(c)}{h}\Bigr)
\\ &= \underset{\,h\,\rightarrow \,0}{\lim}\biggl(\frac{f(x+h)\,+\,g(x+h)\,-\,f(x)\,-\,g(x)}{h}\biggr) \\ &= \underset{\,h\,\rightarrow \,0}{\lim}\biggl(\frac{\bigl[f(x+h)\,-\,f(x)\bigr]+\bigl[g(x+h)\,-\,g(x)\bigr]}{h}\biggr) \\ &= \underset{\,h\,\rightarrow \,0}{\lim}\Bigl(\frac{f(x+h)\,-\,f(x)}{h}\Bigr) +\underset{\,h\,\rightarrow \,0}{\lim}\Bigl(\frac{g(x+h)\,-\,g(x)}{h}\Bigr) =\frac{\mathrm{d} }{\mathrm{d} x}\bigl(f(x)\bigr)+\frac{\mathrm{d} }{\mathrm{d} x}\bigl(g(x)\bigr) \end{array}\)

Differens:
\(\begin{array} {lll} \frac{\mathrm{d} }{\mathrm{d} x}\bigl(f(x)-g(x)\bigr)\!\!\!\! &= \underset{\,h\,\rightarrow \,0}{\lim}\biggl(\frac{f(x+h)\,-\,g(x+h)\,-\,\color{Red} {\bigl(}f(x)\,+\,g(x)\color{Red} {\bigr)}}{h}\biggr) \\ &= \underset{\,h\,\rightarrow \,0}{\lim}\biggl(\frac{f(x+h)\,-\,g(x+h)\,-\,f(x)\,-\,g(x)}{h}\biggr) \\ &= \underset{\,h\,\rightarrow \,0}{\lim}\biggl(\frac{\bigl[f(x+h)\,-\,f(x)\bigr]-\bigl[g(x+h)\,-\,g(x)\bigr]}{h}\biggr) \\ &= \underset{\,h\,\rightarrow \,0}{\lim}\Bigl(\frac{f(x+h)\,-\,f(x)}{h}\Bigr) -\underset{\,h\,\rightarrow \,0}{\lim}\Bigl(\frac{g(x+h)\,-\,g(x)}{h}\Bigr) =\frac{\mathrm{d} }{\mathrm{d} x}\bigl(f(x)\bigr)-\frac{\mathrm{d} }{\mathrm{d} x}\bigl(g(x)\bigr) \end{array}\)

... og dét kalder man så et bevis ...
bare laura
Indlæg: 6
Tilmeldt: 13 jun 2021, 17:38

Re: Differentialregning

Indlægaf bare laura » 13 jun 2021, 22:15

arrh, okay, tak for hjælpen!
number42
Indlæg: 1371
Tilmeldt: 10 mar 2017, 12:11

Re: Differentialregning

Indlægaf number42 » 13 jun 2021, 23:06

Der var en lille smutter med fortegnet i ringstedLC differens udtryk.

Altså f(x)-g(x), tælleren skal naturligvis være ( f(x+h)-g(x+h)) - ( f(x)-g(x))

Men til slut bliver det rigtigt
bare laura
Indlæg: 6
Tilmeldt: 13 jun 2021, 17:38

Re: Differentialregning

Indlægaf bare laura » 14 jun 2021, 10:42

Se det forstår jeg ikke, for jeg havde tænkt det samme til at starte med, men så kommer der til at stå +f(x) og +g(x) i tællerne til sidst, hvilket ikke stemmer overens med tælleren i differentialkvotienten... vel?
number42
Indlæg: 1371
Tilmeldt: 10 mar 2017, 12:11

Re: Differentialregning

Indlægaf number42 » 14 jun 2021, 14:49

( f(x+h)-g(x+h)) - ( f(x)-g(x)) = f(x+h)-f(x) - ( g(x+h) - g(x) )

Så du ender med at få f'(x) - g'(x) hvilket er det du skulle have ved at differentiere f(x)-g(x)

Du regner et eller andet galt
bare laura
Indlæg: 6
Tilmeldt: 13 jun 2021, 17:38

Re: Differentialregning

Indlægaf bare laura » 14 jun 2021, 20:27

Arh yes, jeg kan se det nu!:) tak for hjælpen

Tilbage til "Matematik A"

Hvem er online

Brugere der læser dette forum: Ingen og 5 gæster